Deep Dive on Amazon Redshift

Pratim Das
Specialist Solutions Architect, Data & Analytics, EMEA
28th June, 2017
<table>
<thead>
<tr>
<th>Topic</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep inside Redshift Architecture</td>
<td>10%</td>
</tr>
<tr>
<td>Performance tuning</td>
<td>5%</td>
</tr>
<tr>
<td>Integration with AWS data services</td>
<td>5%</td>
</tr>
<tr>
<td>Redshift Spectrum</td>
<td>10%</td>
</tr>
<tr>
<td>Redshift Echo System</td>
<td>15%</td>
</tr>
<tr>
<td>Redshift at Manchester Airport Group</td>
<td>45%</td>
</tr>
<tr>
<td>Summary + Q&A</td>
<td>10%</td>
</tr>
</tbody>
</table>
Redshift Architecture
Amazon Redshift

Fast, simple, cost-effective data warehousing.

Managed Massively Parallel Petabyte Scale Data Warehouse

Streaming Backup/Restore to S3

Load data from S3, DynamoDB and EMR

Extensive Security Features

Scale from 160 GB -> 2 PB Online
Amazon Redshift Cluster Architecture

Massively parallel, shared nothing

Leader node
- SQL endpoint
- Stores metadata
- Coordinates parallel SQL processing

Compute nodes
- Local, columnar storage
- Executes queries in parallel
- Load, backup, restore
- 2, 16 or 32 slices
Design for Queryability

- *Equally on each slice*
- *Minimum amount of work*
- *Use just enough cluster resources*
Do an *Equal* Amount of Work on Each Slice
Choose Best Table Distribution Style

Key
Same key to same location

Even
Round robin distribution

All
All data on every node
Do the *Minimum* Amount of Work on Each Slice
Reduced I/O = Enhanced Performance

Columnar storage
+ Large data block sizes
+ Data compression
+ Zone maps
+ Direct-attached storage

<table>
<thead>
<tr>
<th>Table</th>
<th>Column</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>listing</td>
<td>listid</td>
<td>delta</td>
</tr>
<tr>
<td>listing</td>
<td>sellerid</td>
<td>delta32k</td>
</tr>
<tr>
<td>listing</td>
<td>eventid</td>
<td>delta32k</td>
</tr>
<tr>
<td>listing</td>
<td>dateid</td>
<td>bytedict</td>
</tr>
<tr>
<td>listing</td>
<td>numtickets</td>
<td>bytedict</td>
</tr>
<tr>
<td>listing</td>
<td>priceperticket</td>
<td>delta32k</td>
</tr>
<tr>
<td>listing</td>
<td>totalprice</td>
<td>mostly32</td>
</tr>
<tr>
<td>listing</td>
<td>listtime</td>
<td>raw</td>
</tr>
</tbody>
</table>

10 | 13 | 14 | 26 |…
… | 100 | 245 | 324
375 | 393 | 417…
… 512 | 549 | 623
637 | 712 | 809…
… | 834 | 921 | 959
Use Cluster Resources Efficiently to Complete as Quickly as Possible
Workload Management

Amazon Redshift Workload Management

Queries: 80% memory

ETL: 20% memory

Waiting

Running

4 Slots

2 Slots

80/4 = 20% per slot

20/2 = 10% per slot

Client

BI tools

Analytics tools

SQL clients
Redshift Performance Tuning
Redshift Playbook

Part 1: Preamble, Prerequisites, and Prioritization
Part 2: Distribution Styles and Distribution Keys
Part 3: Compound and Interleaved Sort Keys
Part 4: Compression Encodings
Part 5: Table Data Durability

amzn.to/2quChdM
Optimizing Amazon Redshift by Using the AWS Schema Conversion Tool

amzn.to/2sTYow1
Ingestion, ETL & BI
Getting data to Redshift using AWS DMS

- Simple to use
- Minimal Downtime
- Supports most widely used Databases
- Low Cost
- Fast & Easy to Set-up
- Reliable
Loading data from S3

• Splitting Your Data into Multiple Files
• Uploading Files to Amazon S3
• Using the COPY Command to Load from Amazon S3
ETL on Redshift

AWS Glue

Fully-managed data catalog and ETL service

Integrated with:

S3, RDS, Redshift & any JDBC-compliant data store
QuickSight for BI on Redshift

QuickSight seamlessly connects to Redshift giving you native access to all of your clusters and tables.

Achieve high concurrency by offloading end user queries to SPICE.

Calculations can be done in SPICE reducing the load on the underlying database.
Amazon Redshift Spectrum
Amazon Redshift Spectrum
Run SQL queries directly against data in S3 using thousands of nodes

- Fast @ exabyte scale
- Elastic & highly available
- On-demand, pay-per-query

- High concurrency: Multiple clusters access same data
- No ETL: Query data in-place using open file formats
- Full Amazon Redshift SQL support
Life of a query

Query

```
SELECT COUNT(*)
FROM S3.EXT_TABLE
GROUP BY...
```

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore
Life of a query

Query is optimized and compiled at the leader node. Determine what gets run locally and what goes to Amazon Redshift Spectrum.

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore
Life of a query

Amazon Redshift

JDBC/ODBC

Query plan is sent to all compute nodes

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore
Life of a query

Compute nodes obtain partition info from Data Catalog; dynamically prune partitions
Each compute node issues multiple requests to the Amazon Redshift Spectrum layer.
Amazon Redshift Spectrum nodes scan your S3 data.
Life of a query

Amazon Redshift Spectrum projects, filters, joins and aggregates

Amazon S3 Exabyte-scale object storage

Data Catalog Apache Hive Metastore
Life of a query

Final aggregations and joins with local Amazon Redshift tables done in-cluster

Amazon S3
Exabyte-scale object storage

Data Catalog
Apache Hive Metastore
Life of a query

Result is sent back to client

Amazon Redshift

JDBC/ODBC

Amazon S3

Exabyte-scale object storage

Data Catalog

Apache Hive Metastore
Demo:
Running an analytic query over an exabyte in S3
An author is releasing the 8th book in her popular series. How many should we order for Seattle? What were prior first few day sales?

Let's get the prior books she's written.

- **1 Table**
- **2 Filters**

```sql
SELECT P.ASIN, P.TITLE
FROM products P
WHERE P.TITLE LIKE '%POTTER%' AND P.AUTHOR = 'J. K. Rowling'
```
An author is releasing the 8th book in her popular series. How many should we order for Seattle? What were prior first few day sales?

Let's compute the sales of the prior books she's written in this series and return the top 20 values.

```
SELECT P.ASIN, P.TITLE, SUM(D.QUANTITY * D.OUR_PRICE) AS SALES_sum
FROM s3.d_customer_order_item_details D, products P
WHERE D.ASIN = P.ASIN AND P.TITLE LIKE '%Potter%' AND P.AUTHOR = 'J. K. Rowling' AND GROUP BY P.ASIN, P.TITLE
ORDER BY SALES_sum DESC
LIMIT 20;
```
An author is releasing the 8th book in her popular series. How many should we order for Seattle? What were prior first few day sales?

Let's compute the sales of the prior books she's written in this series and return the top 20 values, just for the first three days of sales of first editions

```
SELECT P.ASIN,
P.TITLE,
P.RELEASE_DATE,
SUM(D.QUANTITY * D.OUR_PRICE) AS SALES_sum
FROM s3.d_customer_order_item_details D,
    asin_attributes A,
    products P
WHERE D.ASIN = P.ASIN AND
    P.ASIN = A.ASIN AND
    A.EDITION LIKE '%FIRST%' AND
    P.TITLE LIKE '%Potter%' AND
    P.AUTHOR = 'J. K. Rowling' AND
    D.ORDER_DAY :: DATE >= P.RELEASE_DATE AND
    D.ORDER_DAY :: DATE < dateadd(day, 3, P.RELEASE_DATE)
GROUP BY P.ASIN, P.TITLE, P.RELEASE_DATE
ORDER BY SALES_sum DESC
LIMIT 20;
```
Let's build an analytic query - #4

An author is releasing the 8th book in her popular series. How many should we order for Seattle? What were prior first few day sales?

Let's compute the sales of the prior books she's written in this series and return the top 20 values, just for the first three days of sales of first editions in the city of Seattle, WA, USA.

SELECT
 P.ASIN,
 P.TITLE,
 R.POSTAL_CODE,
 P.RELEASE_DATE,
 SUM(D.QUANTITY * D.OUR_PRICE) AS SALES_sum
FROM
 s3.d_customer_order_item_details D,
 asin_attributes A,
 products P,
 regions R
WHERE
 D.ASIN = P.ASIN AND
 P.ASIN = A.ASIN AND
 D.REGION_ID = R.REGION_ID AND
 A.EDITION LIKE '%FIRST%' AND
 P.TITLE LIKE '%Potter%' AND
 P.AUTHOR = 'J. K. Rowling' AND
 R.COUNTRY_CODE = 'US' AND
 R.CITY = 'Seattle' AND
 R.STATE = 'WA' AND
 D.ORDER_DAY :: DATE >= P.RELEASE_DATE AND
 D.ORDER_DAY :: DATE < dateadd(day, 3, P.RELEASE_DATE)
GROUP BY P.ASIN, P.TITLE, R.POSTAL_CODE, P.RELEASE_DATE
ORDER BY SALES_sum DESC
LIMIT 20;
Now let’s run that query over an exabyte of data in S3

```sql
demo=# SELECT
    demo=#   P.ASIN,
    demo=#   P.TITLE,
    demo=#   R.POSTAL_CODE,
    demo=#   P.RELEASE_DATE,
    demo=#   SUM(QO.QUANTITY * D.OUR_PRICE) AS SALES_sum
    demo=#   FROM s3.d_customer_order_item_details D, asin_attributes A, products P, regions r
    demo=#   WHERE D.ASIN = P.ASIN AND
    demo=#     P.ASIN = A.ASIN AND
    demo=#     D.REGION_ID = R.REGION_ID AND
    demo=#     A.EDITION LIKE '%FIRST%' AND
    demo=#     P.TITLE LIKE '%Potter%' AND
    demo=#     P.AUTHOR = 'J. K. Rowling' AND
    demo=#     R.COUNTRY_CODE = 'US' AND
    demo=#     R.CITY = 'Seattle' AND
    demo=#     R.STATE = 'WA' AND
    demo=#     D.ORDER_DATE <= P.RELEASE_DATE AND
    demo=#     D.ORDER_DATE < dateadd(day, 3, P.RELEASE_DATE)
    demo=#   GROUP BY P.ASIN, P.TITLE, R.POSTAL_CODE, P.RELEASE_DATE
    demo=#   ORDER BY sales_sum DESC
    demo=#   LIMIT 20;
```

Roughly 140 TB of customer item order detail records for each day over past 20 years.

190 million files across 15,000 partitions in S3. One partition per day for USA and rest of world.

Need a **billion-fold** reduction in data processed.

Running this query using a 1000 node Hive cluster would take over 5 years. *

- Compression5X
- Columnar file format10X
- Scanning with 2500 nodes2500X
- Static partition elimination2X
- Dynamic partition elimination350X
- Redshift’s query optimizer40X

```plaintext
---------------------------------------------------
Total reduction ..................3.5B X
```

* Estimated using 20 node Hive cluster & 1.4TB, assume linear
* Query used a 20 node DC1.8XLarge Amazon Redshift cluster
* Not actual sales data - generated for this demo based on data format used by Amazon Retail.
Is Amazon Redshift Spectrum useful if I don’t have an exabyte?

Your data will get bigger

On average, data warehousing volumes grow 10x every 5 years

The average Amazon Redshift customer doubles data each year

Amazon Redshift Spectrum makes data analysis simpler

Access your data without ETL pipelines

Teams using Amazon EMR, Athena & Redshift can collaborate using the same data lake

Amazon Redshift Spectrum improves availability and concurrency

Run multiple Amazon Redshift clusters against common data

Isolate jobs with tight SLAs from ad hoc analysis
Redshift Partner Echo System
4 types of partners

• Load and transform your data with **Data Integration Partners**

• Analyze data and share insights across your organization with **Business Intelligence Partners**

• Architect and implement your analytics platform with **System Integration and Consulting Partners**

• Query, explore and model your data using tools and utilities from **Query and Data Modeling Partners**

aws.amazon.com/redshift/partners/
“Some” Amazon Redshift Customers

Adobe
Beachmint
Yelp
Snowplow
Nintendo
Amplitude
Nokia
Foursquare
Pinterest
FT.com
Sling
LatentView
docomo
NASDAQ OMX
FINRA
Amazon
Etix
Scopely
HasOffers
ImsHealth
Euclid
SoundCloud
Sansan
Schumacher Group
Albert
Spuul
Peak Games
Cake
BookMyShow
Vivaki
DataXu
Miniclip
UMUC
University of Maryland University College
Manchester Airport Group

An AWS Redshift customer story

Stuart Hutson
Head of Data and BI, MAG

+ Munsoor Negyal
Director of Data Science, Crimson Macaw
MAG – take-off with cloud and data
Stuart Hutson – Head of Data and BI
THE AVIATION PROFESSIONALS

MAG is a leading UK based airport company, which owns and operates Manchester, London Stansted, East Midlands and Bournemouth airports.

MAG is privately managed on behalf of its shareholders, the local authorities of Greater Manchester and Industry Funds Management (IFM). IFM is a highly experienced, long-term investor in airports and already has significant interests in ten airports across Australia and Europe.

48.5 MILLION passengers served per year.

Over 80 AIRLINES serving 272 DESTINATIONS direct.

£134.3 MILLION RETAIL INCOME per annum delivered via 200+ shops, bars and restaurants.

£125.7 MILLION CAR PARKS INCOME delivered via 96,000 parking spaces.

£623 MILLION property assets across all airports, 5.67m sq ft of commercial property.

£738.4 MILLION REVENUE +10.0% increase from last year.

£283.6 MILLION EBITDA growth of 17.2% in 2015.

£5.6 BILLION contribution to the UK economy from MAG airports.

Source: FY15 Report & Accounts
OUR AIRPORTS...

MAG airports serve over 48.5 million people per annum from complementary catchment areas covering over 75% of the UK population.

Manchester Airport
- c. 23m passengers per annum.
- UK’s 3rd largest airport.
- 70+ airlines & 200+destinations.
- 2 runways with potential 62% capacity.
- 21.5m people within a 2 hour drive.

Bournemouth Airport
- c. 0.7m passengers per annum.
- Significant investment in new terminal increasing passenger capacity to 3m p.a.
- Wealthy catchment area.
- Large land holding – on-site business park.

East Midlands Airport
- c. 4.5m passengers per annum.
- UK’s largest freight airport after Heathrow – 310,000 tonnes p.a.
- Located next to key road interchanges – four hours from virtually all UK commerce.

London Stansted Airport
- c. 23m passengers per annum.
- UK’s 4th largest airport.
- 150+ destinations.
- 1 runway with 50% spare capacity.
- 25m people within 2 hour drive.
- Acquired February 2015.
OUR CONNECTIVITY…

80+ airlines and over 270 direct destinations providing global connectivity.

AIR SERVICE DEVELOPMENT

MAG has a diverse carrier mix from global destinations with an excellent track record of incentivising passenger growth.

MAG has exceeded expectations with industry-leading rates of passenger growth. Importantly for passengers, by forging strong commercial partnerships with airlines, our airports have been able to increase choice and convenience and make a stronger contribution to economy growth.

CARGO SERVICE DEVELOPMENT

MAG’s Cargo produces an annual income of £20.2 million and holds 26% of the UK freight market share.

East Midlands is the UK’s largest dedicated freight hub handling 310,000 tonnes of freight per annum. Stansted handles 233,000 tonnes of freight per annum and is a key gateway to London and the South of England.
OUR DEVELOPMENTS...

Manchester Transformation Programme and London Stansted Transformation Programme are developments that all aim to drive improved customer service.

MANCHESTER TRANSFORMATION PROGRAMME

With investment of £1 billion, Manchester will become one of the most modern and customer focused airports in Europe demonstrating the importance of Manchester as a global gateway.

LONDON STANSTED TRANSFORMATION PROGRAMME

The £80 million terminal transformation project at London Stansted will transform the passenger experience and boost commercial yields.
MAG’S CURRENT BUSINESS INTELLIGENCE MATURITY

1. WHAT HAPPENED?
2. WHY DID IT HAPPEN?
3. WHAT WILL HAPPEN?
4. HOW CAN WE MAKE IT HAPPEN?

- Descriptive Analytics
- Diagnostic Analytics
- Predictive Analytics
- Prescriptive Analytics
MAG’S LEGACY ARCHITECTURE - CHALLENGES...

Business
- Multiple version of the truth
- Unclear of operational problems
- People are overloaded and with data and data led questions
- Analysts not able to do analyst job due to lack of data and tools
- Data processing issues - late reports, missing data
- Data accessible in silos - no real cross-functional analysis

Technical
- Database @ 95% capacity on physical kit that can not be scaled.
- Dashboards are slow to run.
- Constant optimisation and maintenance of database.
- Limited concurrent connections for queries.
- Lack of self-serve – centralised BI model.
- No direct connection to database – business wants to expand into using R and Python etc.
- All data in batch with no possibility of streaming
Monetise Data

- **Monetise data and technology across our omni-channels:** MAG’s BI Strategy must be bold, it should be aiming for how we monetises our data and technology across our omni-channel business by improving the customer experience.

Democratise Data

- **Democratise data across the Enterprise:** Our data needs to be pervasive across the organisation. The decisions of the organisation should be made on clear information presented to the business at the right time to enable MAG to make the right decisions.

Data DNA

- **Create a data DNA:** Build a culture around data and analytical thinking across the organisation by embedding analytics and data across MAGs business processes and decision making.
Build Data and BI Foundation solution
• To create an extensible and flexible data solution for MAG comprising of:
 • **Extended Data Warehouse.**
 • Scalable and elastic compute.
 • Deal with seasonality spikes of passenger travel.
 • **Real-time streaming.**
 • Enable MAG to become a real-time business across their customer journey.
 • **Cloud environment:**
 • Secured.
 • Resilient.
 • Repeatable build.
 • **Enable MAG to quickly experiment at low cost and minimal risk.**
 • MAG wants to trial new technologies, especially open-source.
 • **Create an architecture than can evolve over time to meets MAG’s new challenges.**
 • Benefits delivered early and continuously.
 • No need for MAG to invest in a large, front-loaded EDW programme.
EXAMPLE OF MAG’S DESIGN PRINCIPLES TO SOLVE THE PROBLEMS…

• Evolutionary architecture
• Infrastructure as Code
• Protecting our data
• Assume for failure
• Data quality is a priority
• Embrace open source for experimentation
• SaaS -> PaaS -> IaaS
• Serverless computing
• Etc.
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single instance database.</td>
<td>Scale-able Data Warehouse.</td>
</tr>
<tr>
<td>Daily sales rung in at store level.</td>
<td>Over 90% of all sales automatically ingested at product level.</td>
</tr>
<tr>
<td>Car parking - flat files ingested in batch.</td>
<td>Ingest and interrogate streaming data directly:</td>
</tr>
<tr>
<td>Access to database limited to reporting tool.</td>
<td>Authorised users can use visualisation and data science tools (e.g. R and Python) of their choice for self-serve analytics</td>
</tr>
<tr>
<td>No database writeback for end-users.</td>
<td>Sandboxes in Redshift for end user experimentation.</td>
</tr>
<tr>
<td>Car park data is being added via Kinesis</td>
<td></td>
</tr>
</tbody>
</table>
MAG – NEXT 6-12 MONTHS...

• Moving to near-time streaming into Redshift for:
 • Terminal Operations
 • Security Services
 • Car Park Management

• Streaming semi-structured data into Redshift
 • Trialling IoT data streaming
 • Passenger analysis

• Trial AWS Glue and AWS Redshift Spectrum
 • Automated profile and catalogue of data across the enterprise
 • Continuous integration of data into our data warehouse
Who Are Crimson Macaw

Driving customer success by unlocking the value of data.
Competency focused consultancy

1. Plan
2. Build
3. Action

www.crimsonmacaw.com
Our partners ...

3 AWS Big Data Speciality
3 AWS Certified Solutions Architect Associate
2 AWS Certified Developer Associate
2 AWS Certified SysOps Administrator Associate
Building a solution

... without too many twists and turns.
Key architectural components used

- Visualisation in **Tableau**
- Streaming in **Kinesis** & **Kinesis Firehose**
- Storage in **S3**
- Data Warehouse in **Amazon Redshift**
- Data Transformation in **ODI**
Cloud Architecture + Data Architecture = Solution

How do you match the pace of infrastructure build in the cloud with understanding the data & BI requirements?

Deliver value quickly vs conformed dimensions?

- A horizontal analytical ‘slice’ across the estate.
- Understand conformed dimensions.
- Vertical slice of a business domain.
- Reduced refactoring due to the prior horizontal analysis.

Understand how the business will consume and use the data?

- Produce artefacts that are:
 - Shared by stakeholders and the delivery team.
 - Understandable by all parties.
 - Highly visual, allow complex information to be absorbed - sun modelling.
Sun modelling vs Enterprise Bus Matrix
Building the infrastructure (as code)

• Why use infrastructure as code?
 • Repeatability.
 • Consistency.
 • Versioned.
 • Code reviews.
 • Speed of delivery.

• Technology Used:
 • CloudFormation in YAML format with custom YAML Tags.
 • Lambda Functions for Custom Resource Types.
 • Bespoke deployment utility.
 • Puppet Standalone in Cloud Init for EC2.

• Why this approach?
 • Enforced Tagging Policy with propagated tags.
 • Custom YAML Tags act as a precompiler for CloudFormation.
 • Not all resources types were available, e.g. DMS.
 • Redshift IAM Roles and Tags – both now available out of the box!
Security overview

- Three independent AWS accounts
 - Dev – for development of data processes.
 - Prod – target deployment.
 - Sec – sink for data generated by Config Service and CloudTrail to S3 buckets.

- Encryption
 - KMS Encryption keys used throughout
 - Enforced SSL connections to Redshift
 - S3 – enforced write encryption (by policy).

- Audit and compliance documentation
 - AWS Artifacts.
Redshift topology

- **Storage Optimised (red)**
 - Optimised for storing larger volumes of data (source).
 - Ingestion point for newly arriving data.
 - Transformation layer (large number of work tables).
 - VPC - private subnet.

- **Compute Optimised layer (blue)**
 - Transformed data.
 - Near real-time operational data.
 - Present dimensional layer.
 - VPC – public subnet (whitelisted access).
What about Streaming?

- Setup Kinesis Streams to allow 3rd parties to send data.
- Enabled cross account access with an assumed role.
- Used Lambda to route mixed data to multiple Firehose Streams.
- Firehose Streams sink data to S3 and/or Redshift Compute (blue).
Observations
ODI and Redshift

- Problem: ODI initiated Redshift tasks not completing.

 Solution: Increase Array Fetch Size in ODI

- Problem: No native knowledge modules in ODI for Redshift.

 - Solution: Customised existing generic SQL knowledge modules for Redshift.

 - Evaluating 3rd party solution Knowledge Module.
Tableau and Redshift

- How does Tableau Online connect to Redshift?
 - JDBC via SSL.
 - Whitelisted to Redshift.
 - Tableau available in multiple regions (US, Ireland).

- Enable Redshift constraints:
 - Foreign Key and Primary Key and Unique constraints – ensure they are created in Redshift (even though they are not enforced).

- Enable Tableau “Assume Referential Integrity”
 - in Tableau workbooks (if you have it!).

- Queries in Tableau:
 - Executed via Redshift cursor – minimise IO.
 - Current activity: `stv_active.Cursors`.
 - For recent activity (two - five days): `stl_query` and `stl_utility_text`.

```
dev_munsoor.negyal  fetch 10000 in "SQL_CUR0x7fdc9b144800"
```
Tableau – getting back to SQL

```sql
select a.query, a.querytxt as cursor_sql , b.sequence, b.text as raw_sql, b.starttime
from stl_query a inner join stl_utilitytext b
on a.pid = b.pid and a.xid = b.xid
where database = '<DBName>'
and a.starttime >= dateadd(day, -1, current_date)
order by a.xid, b.starttime, b.sequence asc;
```
Redshift

• Performance so far has been very good.
• A lot to do with the design of Redshift.
 • Optimisations so far have been limited to:
 • Fields:
 • lengths
 • datatypes
 • compression datatypes.
 • Distribution keys.
 • Sort keys.
 • Skew analysis.
 • Vacuum and ANALYZE.
• But we intend to do some more work on below:
 • Work queue management.
 • User load analysis.
 • Attribute pushdown.
1. Analyze Database **Audit Logs** for Security and Compliance Using Amazon Redshift Spectrum
2. Build a **Healthcare Data Warehouse** Using Amazon EMR, Amazon Redshift, AWS Lambda, and OMOP
3. Run **Mixed Workloads** with Amazon Redshift Workload Management
4. **Converging Data Silos** to Amazon Redshift Using AWS DMS
5. Powering Amazon Redshift Analytics with Apache **Spark** and **Amazon Machine Learning**
6. Using pgpool and Amazon ElastiCache for **Query Caching** with Amazon Redshift
7. Extending Seven Bridges Genomics with Amazon **Redshift** and **R**
8. **Zero Admin** Lambda based Redshift Loader
London Amazon Redshift

Wednesday, July 5, 2017 - 6:00 PM to 8:00 PM

60 Holborn Viaduct, London
http://goo.gl/maps/yMZPT

{1:“Redshift Deep Dive and new features since last Meetup” | 2:“OLX presenting Advanced Analytics and Machine Learning with Redshift” | 3:“Other customer/partner case studies” | 4:“Next steps for the community”}
Thank You

Data is magic!